탁구공 충격 해석

담당교수 : 신금철 교수님

제 출 자 : 6조

신동민

강원욱

김희수

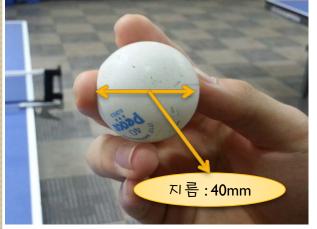
서승현

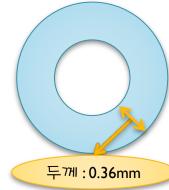
탁구공

재료	셀룰로이드
탄성계수	1.4GPa
포아송비	0.35
항복강도	50MPa
지름	40mm
두께	0.36mm
무게	2.7g
최고속도	200km

셀룰로이드(Celluloid)는 질산 섬유소에 장뇌를 섞어 압착하여 만든 반투명한 플라스틱이다, 장난감 · 필름 · 문구 · 장신구 등에 쓰이고 1869년 존 하이야트와 이사야 하이야트에 의해 개발 되었다.

국내에는 국내 순수 자체기술로 1953년 한국 탁구계의 새로운 지평을 열었던 평화산업기업은 최초 올림픽공식 사용구에 채택되어 국제적인 브랜드로 성장하게 되었다.

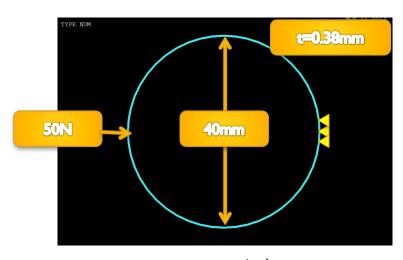

2.


문제의 정의

탁구공의 구조해석,이론,실험결과를 비교하여 파손여부를 알아본다.

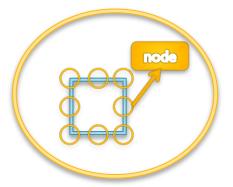
- 1) 가정
- 탁구공은 결함이 없는 것으로 가정한다.
- 2) 모델링 방법
- 탁구공은 구 모형이므로 SHELL 93 사용
- EXTRUDE으로 외전을 안다.
- 3) 실험 결과
- 탁구채로 탁구공을 쳤을 때 파손되지 않는다.

\	재료	셀룰로이드
	탄성계수	1.4GPa
	포아송비	0.35
	항복강도	50MPa


모델링 과정

가정

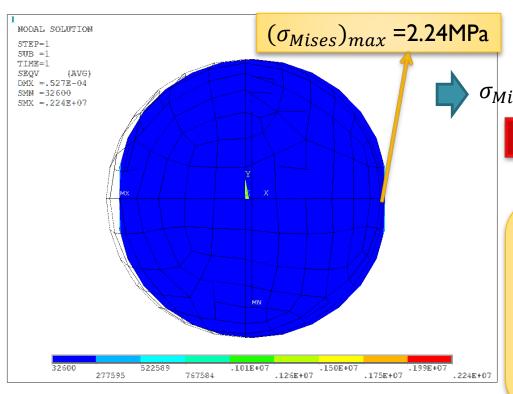
- 탁구공은 결함이 없는 것으로 가정한다.
- 힘은 탁구채로 탁구공을 쳤을 때의 힘을 50N(5kgf)으로 가정한다.


<Shell 93 모델링>

<meshing 모습>

모델링 과정

- 구조해석
- Shell93 (8-node)
- 구의 피외전체 모델링
- EXTRUDE사용 360도 회전



탁구공의 파괴 분석 및 결과

전단변형에너지설의 파괴조건식

$$\sigma_{\textit{Mises}} = \sqrt{\sigma_{1}^{2} + \sigma_{2}^{2} - \sigma_{1}\sigma_{2}} = \sqrt{\sigma_{xx}^{2} + \sigma_{yy}^{2} - \sigma_{xx}\sigma_{yy} + 3\tau_{xy}^{2}}$$

Von Mises stress 분포

 $\sigma_{Mises} = 2.24MPa < \sigma_y = 55MPa$

파손되지 않을 것으로 예상됨

- 1, 파손 해석 결과 파손되지 않을 것으로 실험결과가 나와 예상하던 결과와 일치하였음,
- 2. 실제 탁구시합을 보아도 탁구공 이 파손되는걸 볼 수 가 없음

5. 과제를 하며 느낀점

신동민 : 팀 프로젝트로 하니까 서로 모르는 것도 알려주면서 하니까 더 잘 할 수 있게 되고 몰랐던 사실도 알게되서 되게 좋았다.

가원목: 실생활에서 사용되는 물체의 파손해석을 Ansys라는 CAE프로그램으로 할 수 있어서 재밌기도 하고 신기하기도 한 경험이 되었고, 유용한 프로그램이란 것 도 느낄 수가 있었다. 실제로 산업 현장에서 우리가 한 해석이나 다른 제품을 만들 때의 해석을 통해 더 낫은 제품을 만들 수도 있고, 경제적으로도 정말 좋 은 것 같다.

김희수 : 과제를 하기 전 아직 ANSYS가 미숙해 어려웠다. 주제를 정하고, 주제에 맞는 재료를 찾아보고, 직접 프로그램을 해보니 처음에 막막했지만, 조원들과 함께 과제를 수행하며 하나하나 해보니 해결 하지 못할 것 같았지만 탁구공이 파괴 되지 않는다는 결과를 얻었다. 아직도 미숙하긴 하지만 이런 실험들을 자주하 면 실력을 쌓을 수 있을 거라 생각된다.

서승현: CAE를 처음했을 때는 어떤 것인지 잘 모르고 낯설기도 했는데 하나씩 배워가 면서 자신이 만들고 싶은 모형을 그려본 것과 직접 해석을 해보는 것까지 해서 CAE에 대해서 알아가게 되었다. 실력이 부족해서 잘 그리지 못하고 그랬지만 더욱 더 많은 연습을 하고 혼자서 직접 열심히 해본다면 좋은 결과를 얻을 수 있을 것이라고 생각된다.